

18ME71

(10 Marks)

b. Find the overall transfer function by using Mason's gain formula for the signal flow graph shown in the Fig.Q5(b).

a. Draw the corresponding signal flow graph of a given block diagram in Fig.Q6(a) and obtain 6 transfer function by using Mason's gain formula.

(10 Marks)

 $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 10y = 8u(t)$ b. A system is governed by the differential equation where y is the output and u is the input of the system. Obtain a state space representation of the system. (10 Marks)

Module-4

- The characteristic equation of a system is given by a. $s^{6} + 3s^{5} + 4s^{4} + 6s^{3} + 5s^{2} + 3s + 2 = 0$ Determine the stability using RH criteria. (08 Marks) b. By applying Routh criterion, discuss the stability of the closed loop system as a function of
 - $=\frac{K(s+1)}{s(s-1)(s^2+4s+16)}$ K for the following open loop transfer function G(s)H(s) =(12 Marks)

OR

Sketch the rough nature of root locus of a given transfer function

$$G(s)H(s) = \frac{K(s+1)}{s(s+2)(s^2+2s+5)}$$

Sketch the polar plot of given transfer function 9

$$G(s)H(s) = \frac{1}{s(1+5s)(1+10s)}$$

7

8

$$s(1+5s)(1+10s)$$

(06 Marks)

(14 Marks)

(20 Marks)

The transfer function $G(s)H(s) = \frac{10}{s(s+1)(s+2)}$ b. Sketch the rough nature of Nyquist plot and comment on stability.

OR

10 Draw the Bode plot for the transfer function

 $G(s) = \frac{36(1+0.2s)}{s^2(1+0.05s)(1+0.01s)}$

From Bode plot determine :

- (i) Phase crossover frequency (ii) Gain crossover frequency (iii) Gain margin
 - (iv) Phase margin (20 Marks) * * 2 of 2 * *